

PROYECTO

DE SUSTITUCIÓN DEL APOYO № 51 DE LA LÍNEA AÉREA DE ALTA TENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA-ALLO"

TÉRMINO MUNICIPAL DE DICASTILLO

PROVINCIA DE NAVARRA

AUTOR DEL PROYECTO: FERMÍN MANRIQUE LARRAZA FECHA: Junio de 2.019

COLEGIADO Nº: 25.294 DEL C.I.C.C.P.

PROYECTO DE SUSTITUCIÓN DEL APOYO № 51 DE LA LÍNEA AÉREA DE ALTA TENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA-ALLO"

TÉRMINO MUNICIPAL DE DICASTILLO

PROVINCIA DE NAVARRA

DOCUMENTO I: Índice General

AUTOR DEL PROYECTO: FERMÍN MANRIQUE LARRAZA

COLEGIADO Nº: 25.294 DEL C.I.C.C.P.

Índice general

DOCU	MENTO I: Índice General	ii
DOCUI	MENTO II: Memoria	4
1.	Objeto	6
2.	Titular de la instalación	6
3.	Descripción general	6
4.	Emplazamiento	
5.	Normas y reglamentación	
6.	Descripción de la línea aérea de alta tensión	7
6.	1. Descripción del trazado	
6.	2. Características de la instalación	9
7.	Conclusión1	
DOCU	MENTO III: Anejos de Cálculo1	
1.	Cálculos mecánicos de la línea aérea de alta tensión1	
	Cálculo mecánico de los conductores1	
1.2.	Tablas de tendido del conductor1	6
	VIENTO IV: Planos1	
DOCU	MENTO V: Presupuesto	0
1.	Presupuesto y mediciones	2
2.	Resumen de presupuesto2	
DOCU	MENTO VI: Estudio básico de seguridad y salud2	4
1.	Objeto2	
2.	Campo de aplicación2	6
3.	Normativa aplicable2	
3.	1. Normas Oficiales2	6
_	2. Normas Particulares	
4.	Desarrollo del estudio	7
4.	1. Aspectos generales2	7
4.		
4.	3. Medidas de Prevención necesarias para evitar riesgos2	8
4.	4. Protecciones	8
4.		
4.		
4.	,	
de	e los trabajadores3	0
DOCLI	MENTO VIII. Relación de Rienes y Derechos Afectados	3

PROYECTO DE SUSTITUCIÓN DEL APOYO № 51 DE LA LÍNEA AÉREA DE ALTA TENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA-ALLO"

TÉRMINO MUNICIPAL DE DICASTILLO

PROVINCIA DE NAVARRA

DOCUMENTO II: Memoria

AUTOR DEL PROYECTO: FERMÍN MANRIQUE LARRAZA

COLEGIADO Nº: 25.294 DEL C.I.C.C.P.

Índice de la memoria

DOCUMENTO I: Índice General							
DOCUMENTO II: Memoria							
1. Objeto	6						
2. Titular de la instalación							
3. Descripción general							
4. Emplazamiento							
5. Normas y reglamentación							
6. Descripción de la línea aérea de alta tensión	7						
6.1. Descripción del trazado	7						
6.1.1. Relación de alineaciones	8						
6.1.2. Relación de cruzamientos y paralelismos afectados	8						
6.2. Características de la instalación	9						
6.2.1. Apoyos, armados y cimentaciones	9						
6.2.2. Conductor	9						
6.2.3. Aislamiento	9						
6.2.4. Herrajes y grapas	9						
6.2.5. Puesta a tierra	9						
6.2.6. Esquema de la instalación de puesta a tierra proyectada	11						
7. Conclusión	12						

1. Objeto

El objeto del presente proyecto es definir las distintas características técnicas de los elementos constructivos que componen la sustitución del apoyo número 51 de la línea aérea de Alta Tensión a 13,2 kV del circuito "ESTELLA-ALLO".

Mediante la reforma propuesta se pretende la sustitución del actual apoyo existente tipo hormigón vibrado, el cual es un apoyo que consta de derivación, por un nuevo apoyo de celosía tipo C4500 – 16E con fijación en amarre, como consecuencia del deterioro del apoyo existente. El documento se realizará ajustándose a lo especificado en los proyectos tipo de Iberdrola Distribución Eléctrica, S.A.U. y sirviendo a su vez como base para la tramitación oficial de la obra en lo que a la Autorización Administrativa y Aprobación del Proyecto de ejecución se refiere.

2. Titular de la instalación

La instalación proyectada es propiedad de:

Nombre	Iberdrola Distribución Eléctrica, S.A.U.
CIF	A-95075578
Dirección	Avenida San Adrián, Nº48, Bilbao (48003)

3. Descripción general

Se proyecta la sustitución del apoyo № 51 del circuito "ESTELLA-ALLO", lo que implica el retensado del conductor LA-110 existente entre los apoyos № 50 y № 52.

El apoyo nº 51 consta de una derivación hacia el CT "JESÚS OCHOA Y OIL NA" (180559000) a través de los apoyos nº 1701 y nº 1702. El conductor existente en el vano entre los apoyos nº 51 y nº 1701 se va a sustituir por el conductor 47-AL1/8-ST1A (LA 56).

LÍNEA AÉREA A 13,2 KV CIRCUITO "ESTELLA-ALLO"

		Tra	amo	LÍNEAS AÉREAS							
		Origen	Final	Tipo de conductor	Nº circuitos		Longitud (m)	Nº apoyos	Elementos Man y Protecció		
						conditate			Tipo *	Nº	
A construir	1) NUEVO APOYO Nº 51 NUEVO APOYO Nº 51		NUEVO APOYO № 51	LA-110	1	1	0	1			
	2)	NUEVO APOYO № 51	APOYO Nº 1701	47-AL1/8-ST1A	1	1	27	0			
A desmontar	1)	APOYO № 51	APOYO № 51	-	-	-	-	1			
•	2)	APOYO Nº 51	APOYO Nº 1701	LA-56	1	1	27	0			

4. Emplazamiento

La instalación proyectada se encuentra ubicada en parcelas pertenecientes al polígono 5 situado en el Término Municipal de Dicastillo, en la Provincia de Navarra.

5. Normas y reglamentación

- Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de Alta Tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09. Real Decreto 223/2008, de 15 de Marzo.
- Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.
- Real Decreto 337/2.014, de 9 de Julio, por el que se aprueba el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23.
- Normas UNE de obligado cumplimiento.
- DECRETO FORAL 93/2006, de 28 de diciembre, por el que se aprueba el Reglamento de desarrollo de la Ley Foral 4/2005, de 22 de marzo, de Intervención para la Protección Ambiental.
- DECRETO FORAL, 129/1991, de 4 de abril, del gobierno de Navarra, por el que se aprueban las normas de carácter técnico para las instalaciones eléctricas con objeto de proteger a la avifauna.
- REAL DECRETO 1432/2008, de 29 de agosto, por el que se establecen medidas para la protección de la avifauna contra la colisión y la electrocución en líneas eléctricas de alta tensión.
- Normativa vigente de IBERDROLA DISTRIBUCIÓN ELÉCTRICA, S.A.U. para líneas eléctricas MT 2.21.66. y
 MT 2.21.60.
- El proyecto cumple con toda la normativa que le es de aplicación a efectos de lo establecido en el artículo 53.1 de la Ley 24/2013, de 26 de diciembre, del Sector Eléctrico.

6. Descripción de la línea aérea de alta tensión

6.1. Descripción del trazado

El nuevo apoyo proyectado se emplaza en la nueva ubicación que figura en los Documentos "Planos".

Maniobras proyectadas:

- Se sustituye el apoyo № 51 de hormigón vibrado por un nuevo apoyo de celosía tipo C- 4500-16E.
- Se retensan los vanos con el conductor existente LA-110 entre los apoyos № 50 y № 52.
- Se realiza la sustitución del conductor LA-56 existente entre los apoyos nº 51 y nº 1701, por el conductor 47-AL1/8-ST1A (LA 56).

6.1.1. Relación de alineaciones

ALINEACIÓN	COORD. X	COORD. Y	DESCRIPCIÓN	LONG.
Nº. 1	(ETRS89/U	TM zone 30N)		(m)
ORIGEN	580.487	4.715.255	Apoyo existente № 50	
FINAL	580.472	4.715.070	Apoyo proyectado Nº 51	
CONDUCTOR		LA-110	A RETENSAR	186
ALINEACIÓN	COORD. X	COORD. Y	DESCRIPCIÓN	LONG.
Nº. 2	(ETRS89/U	TM zone 30N)	DESCRIPCION	(m)
ORIGEN	580.472	4.715.070	Apoyo proyectado Nº 51	
FINAL	580.459	4.714.913	Apoyo existente № 52	
CONDUCTOR		LA-110	A RETENSAR	157
ALINEACIÓN	COORD. X	COORD. Y	DESCRIPCIÓN	LONG.
Nº. 3	(ETRS89/U	TM zone 30N)	DESCRIPCION	(m)
ORIGEN	580.472	4.715.070	Apoyo proyectado № 51	
FINAL	580.497	4.715.059	Apoyo existente № 1701	
CONDUCTOR		47-AL1/8	-ST1A S.C.	27

6.1.2. Relación de cruzamientos y paralelismos afectados

PARALELISMOS

No existen paralelismos a reseñar.

CRUZAMIENTOS

No existen paralelismos a reseñar.

6.2. Características de la instalación

Se conectarán a tierra las pantallas y armaduras de todas las fases en cada uno de los extremos. Esto garantiza que no existan tensiones inducidas en las cubiertas metálicas.

6.2.1. Apoyos, armados y cimentaciones

El apoyo a utilizar en esta instalación será de celosía tipo C 4500-16E, con cimentación monobloque. Las características del apoyo proyectado están recogidas en la N.I. 52.10.01.

Se instalará una cruceta recta RC2-20-S en cogolla para los vanos provenientes de los apoyos nº 50 y nº 52, según N.I. 52.31.02.

Para la derivación hacia el apoyo nº 1701 se va a utilizar una cruceta recta RC2-15-S a 1,80 m de cogolla, según N.I. 52.31.02.

6.2.2. Conductor

El conductor utilizado en los vanos retensados entre los apoyos nº 50 y nº 52 es el existente LA-110.

En el vano entre los apoyos nº 51 y nº 1701 se va a utilizar el conductor 47-AL1/8-ST1A (LA 56).

6.2.3. Aislamiento

El aislamiento en amarre será de tipo composite U70YB20P AL de horquilla y bola, conformado por bastón polimérico largo y elemento PECA (zona de protección de avifauna), siendo la longitud de aislamiento L>1,00m.

El aislamiento suspendido será de tipo composite de horquilla y bola U70PP20P, según NI 48.08.01 "Aisladores compuestos para cadenas de líneas eléctricas de alta tensión".

6.2.4. Herrajes y grapas

Se utilizarán en las cadenas de aisladores y serán de acero estampado galvanizado en caliente, según el apartado 8 del M.T. 2.21.66 y M.T. 2.21.60.

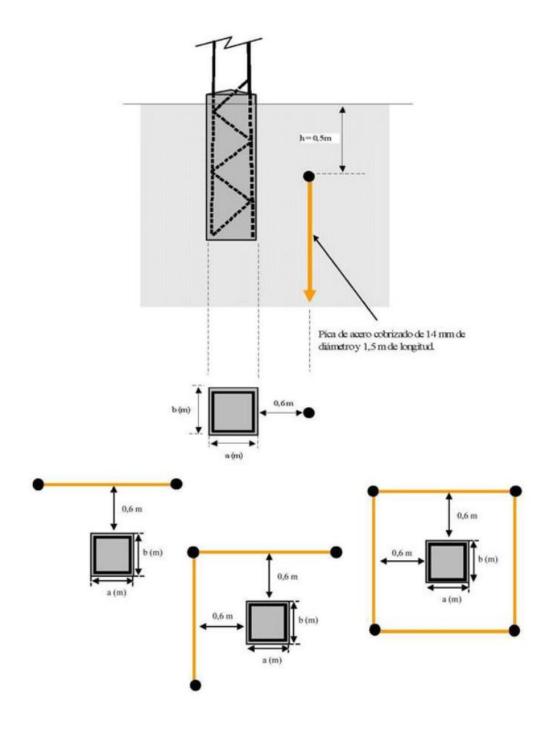
6.2.5. Puesta a tierra

La puesta a tierra en el apoyo proyectado, se realizará con electrodos de picas bimetálicas de acero-cobre y anillos de cable de cobre, cuyo diseño, en base a la zona de ubicación del apoyo y las características del terreno, tipo de suelo y resistividad, se recoge en el M.T. 2.23.35 (Diseño de puestas a tierra en apoyos de L.A.A.T. de tensión nominal igual o inferior a 20 kV).

El principio básico de la puesta a tierra, según establece el Reglamento de Líneas de Alta Tensión, en su apartado 7 de la ITC-LAT-07, es conseguir cumplir los siguientes requisitos:

- Que resista los esfuerzos mecánicos y la corrosión.

- Que resista, desde un punto de vista térmico, la corriente de falta más elevada determinada en el cálculo.
- Garantizar la seguridad de las personas con respecto a tensiones que aparezcan durante una falta a tierra en los sistemas de puesta a tierra.
- Proteger de daños a propiedades y equipos, y garantizar la fiabilidad de la línea.


La configuración proyectada para el apoyo se recoge en la siguiente tabla, según su manual técnico correspondiente.

APOYO NO FRECUENTADO:

NÜ	ÚMERO –	TIPO DE	DIMENSIONES (Planta) DE	CLASIFICACIÓN	DIMENSIONES DE	L ELECTRODO
DE	APOYO	APOYO	LA CIMENTACIÓN	DEL APOYO	ELECTRODO	ELEGIDO
Nο	2 51	C 4500 – 16E	1,17m x 1,17m = 1,37m ²	NO FRECUENTADO		1 PICA

6.2.6. Esquema de la instalación de puesta a tierra proyectada

Configuración del electrodo de puesta a tierra en apoyos no frecuentados para líneas de 20 kV:

7. Conclusión.

Expuestas en este Proyecto las razones que justifican la necesidad del montaje de dicha instalación, cuyas características quedan recogidas en este proyecto, se solicita la Aprobación y Autorización para su construcción y posterior puesta en funcionamiento.

Pamplona, junio de 2.019 El Ingeniero de Caminos

Fdo: FERMÍN MANRIQUE LARRAZA

Colegiado Nº: 25.294 del C.I.C.C.P.

PROYECTO DE SUSTITUCIÓN DEL APOYO № 51 DE LA LÍNEA AÉREA DE ALTA TENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA-ALLO"

TÉRMINO MUNICIPAL DE DICASTILLO

PROVINCIA DE NAVARRA

DOCUMENTO III: Anejos de Cálculo

AUTOR DEL PROYECTO: FERMÍN MANRIQUE LARRAZA

COLEGIADO Nº 25.294 DEL C.I.C.C.P.

Índice de los anejos

1.	Cálculos mecánicos de la línea aérea de alta tensión	. 15
1.1.	Cálculo mecánico de los conductores	. 15
1.2.	Tablas de tendido del conductor	. 16

1. Cálculos mecánicos de la línea aérea de alta tensión

1.1. Cálculo mecánico de los conductores

					PARÁMETROS DE LA CURVA					h-f.min [m]	1335,5	1444,2	812,4			
		km/h	m/h		PARÁM DE LA C					h-f.max [m]	942,6	913,8	194,2			
	(VV)	V _{120/2} , coeficiente sobrecarga hip. Presión-mitad Vv=20 km/h V ₁₂₀ , coeficiente sobrecarga de viento V v=20 km/h	Hielo+V∞, coeficiente sobrecarga hielo+viento Vv=60 km/h	DISTANCIAS DE CONDUCTORES A PARTES PUESTAS A TIERRA	5.4.2	-5°C	M=V _{120/2}			T _H [daN]	724,5	753,7	178,6			
	Viento, coeficiente sobrecarga viento (Vv) Hielo, coeficiente sobrecarga hielo	obrecarga hielo cobrecarga hip. Pr brecarga de vient tre sobrecarga hie	FLECHA MÍNIMA ADAPTANO 55 1		-5°C	m=1			flecha [m]	3,24	2,13	0,12				
	Viento, coeficiente sobrecarga vie Hielo, coeficiente sobrecarga hielo	V _{120/2} , coeficiente sobrecarga hip. Presión-mitad Vv V ₁₂₀ , coeficiente sobrecarga de viento Vv=120 km/h	Hielo+V∞, coeficie		HELO	O °C	m= Hielo			flecha [m]						
-ALLO"				FLECHAS MÁX IMAS APARTADO 3.2.3	TEMPERATURA	20°C	₽ -	Fluencia= 0 %	Error fort.=0 m	flecha [m]	4,58	3,37	0,49			
"ESTELLA A) CÁNICO				ш	VIENTO	15 °C	M= V ₁₂₀			flecha [m]	4,47	3,26	96,0			
3,2 KV NVARR				FENÓM ENOS VIBRATORIOS APARTADO 3.2.2	EDS	15°C	-E		*******	%	11,43	11,70	4,16			
STILANT 13 ASTILLO (NA ÁLCULO ZONA A				FENÓN VIBRA- APARTA	Ш	15	Ë			T _H [daN]	489,6	503,0	67,4			
SUSTITUCIÓN APOYO Nº 51 LAAT 13,2 KV "ESTELLA-ALLO" T.M. DICASTILLO (NAVARRA) TABLA DE CÁLCULO MECÁNICO ZONA A				FRACCIÓN MÁXIM A ADMISBLE APARTADO 3.2.1 (APLICADAS AL CÁLCULO DE APOYO APARTADO 3.5.3)	HPÓTESIS DE HELO	٥°0	m= Hielo			T _H [daN]						
JCIÓN APC T.N ABLA D						TRACCIÓN MÁX APARTA (APLICADAS A APC APC APC	HPÓTESIS DE VIENTO Vv= 120 km/h	-5 °C	m⊨Viento			T _H [daN]	1000,0	1000,0	225,0	
TLSUS									O	0 z a ɔ	0 -	0 11			J	94-AL1/22-ST1A LA 110
				Δ⊃Ζ⊢(⊢ШΖળ-	- O Z	¬ Ш ∑ ≪	υ – × –	0 Z Σ ∢		Tmax		1004,7	225,9			
			viento?: NC	ООШК-	О⊃к-		 	ΔШ		လိ	4,28	4,30	7,21			
			acción del	2	> · - · ı	Υ ·				[w]	185,9	157,0	27,5			
		conductor	curva por la	O r	υ o z – ;	> Ш.		**********		[ш]	8,2	-3,6	-14			
		Th. [daN] Tension horizontal del conductor Tipo de ecuaciones utilizadas: CATENARA ¿Consideracion del desvio de la aurva por la acción del viento?: NO C C C C C C C C C C C C C		[w]	185,9	157,0	27,5									
			ación del de		U∢ZI	-0 :	z				-	2	3			
			T _H , [daN] Te Tipo de ecua ¿Considerac	¿Consider	⊢ « < ≥ 0					50-51	51-52	51-1701				

1.2. Tablas de tendido del conductor

		,,,,,,,,,,,,,,,,	,,,,,,,,,,	,	,
SC	ပွ	flecha [m]	3,99	2,83	0,33
C MEN	35	T _H [daN]	459,59	462,32	52,35
CIA: 0 °	ပွ		3,87	2,72	0,30
P.UEN	30	T _H [daN]	474,03	481,71	58,73
	S	flecha [m]	3,75	2,60	0,26
	25	T _H [daN]	489,64	503,03	67,43
	S	-	3,62	2,48	0,22
	20	T _H [daN]	506,55	526,53	99'62
	S	-	3,50	2,37	0,18
	15	T _H [daN]	524,91	552,47	97,00
TABLA DE TENDIDO ZONA A 5°C 10°C 15°C	S	flecha [m]	3,37	2,25	0,15
	10	T _H [daN]	544,88	581,12	120,69
	5° C	=	3,24	2,13	0,12
		T _H [daN]	566,63	612,73	150,48
	U O Z O ⊃ U ⊢ O Œ		94-AL1/22-ST1A LA 110	94-AL1/22-ST1A LA 110	47-AL1/8-ST1/A LA 56 150,48
	> ·- · · · ·	[m]	185,9	157,0	27,5
conductor	ош ω z – > ш л	<u>E</u>	8,2	-3,6	-1,4
izontal del c lizadas: CA	> < Z O	Ξ	185,9	157,0	27,5
ensión hori Jaciones uti	U < Z ⊢ ∙ O Z		-	2	3
T _H , [daN] Τ Tipo de εσι	⊢ « < ≥ O		50-51	51-52	51-1701
	Th. [daN] Tensión horizontal del conductor Tipo de ecuaciones utilizadas: CATENARIA	5°C 10°C 25°C	The (Idan) The	N C C C C C C C C C	N C C C C C C C C C

Pamplona, junio de 2.019 El Ingeniero de Caminos

Fdo: FERMÍN MANRIQUE LARRAZA

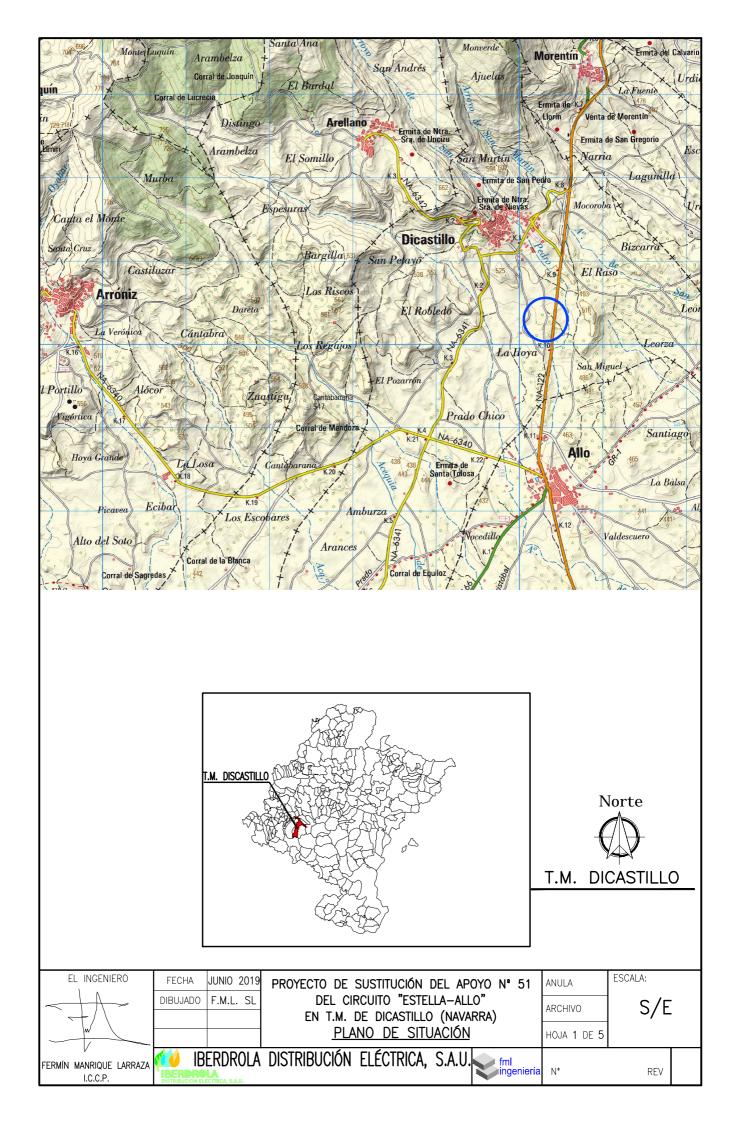
Colegiado Nº: 25.294 del C.I.C.C.P.

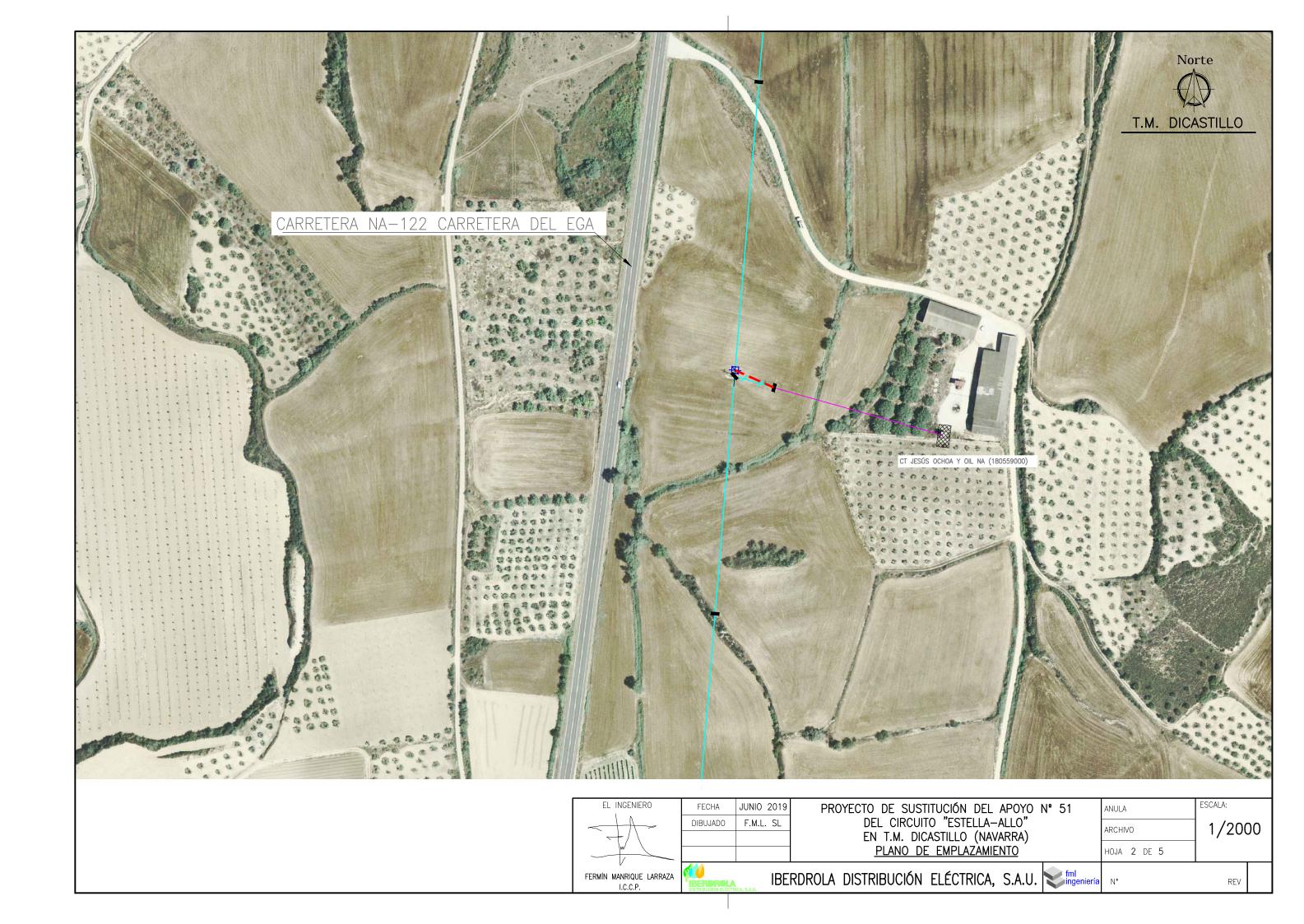
PROYECTO DE SUSTITUCIÓN DEL APOYO № 51 DE LA LÍNEA AÉREA DE ALTA TENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA-ALLO"

TÉRMINO MUNICIPAL DE DICASTILLO

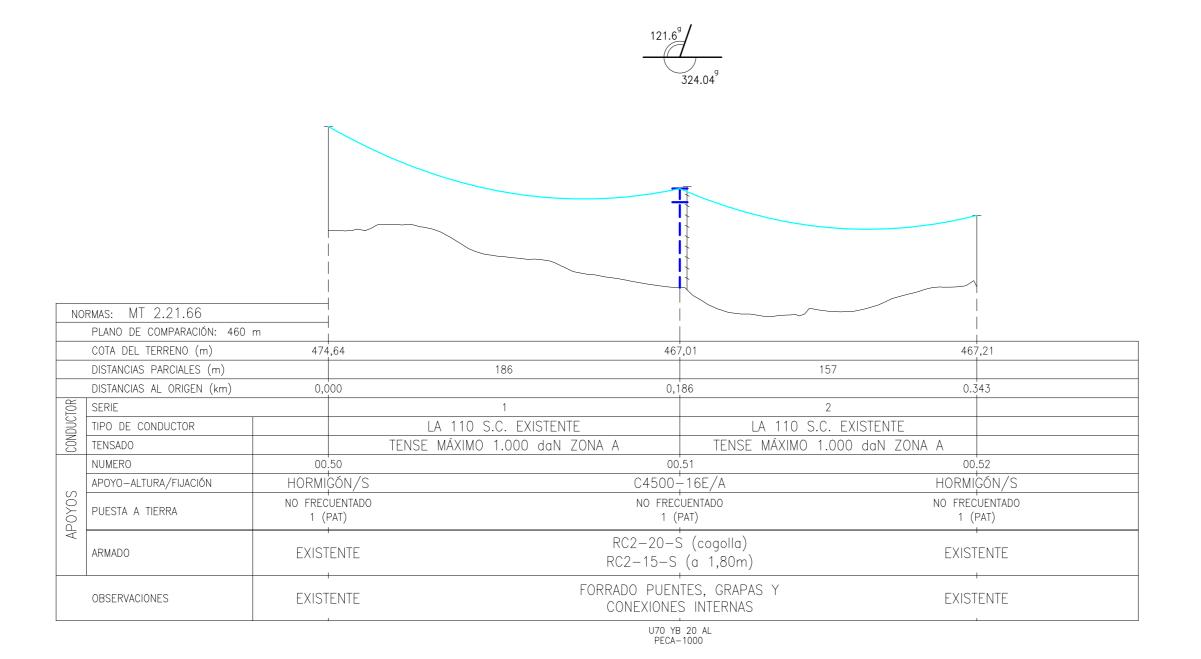
PROVINCIA DE NAVARRA

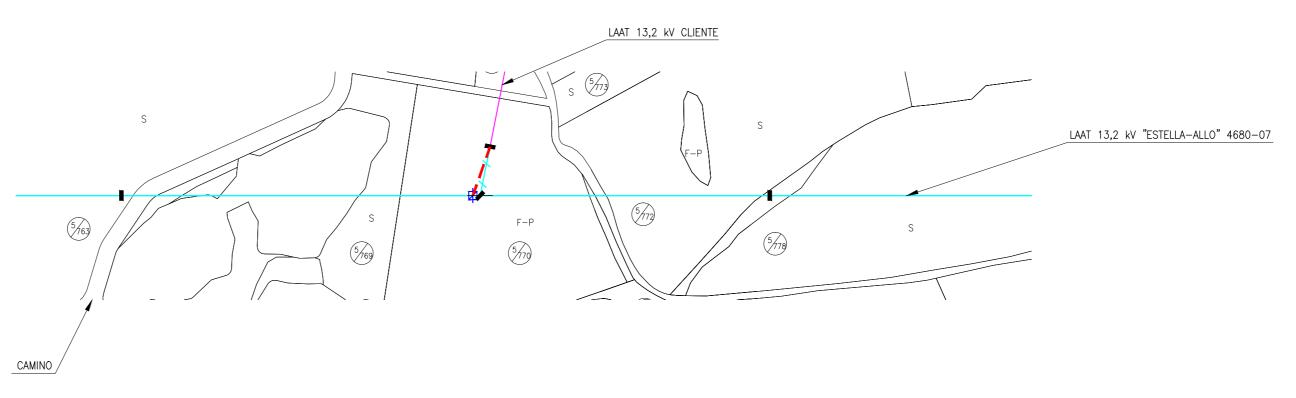
DOCUMENTO IV: Planos


AUTOR DEL PROYECTO: FERMÍN MANRIQUE LARRAZA


COLEGIADO № 25.294 DEL C.I.C.C.P.

Índice de los planos

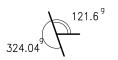

1.	Plano de Situación	1/5
2.	Plano de Emplazamiento	2/5
3.	Plano de Planta y Perfil	.3/5
4.	Plano de Planta y Perfil Derivación	4/5
5.	Plano Esquema Unifilar	5/5

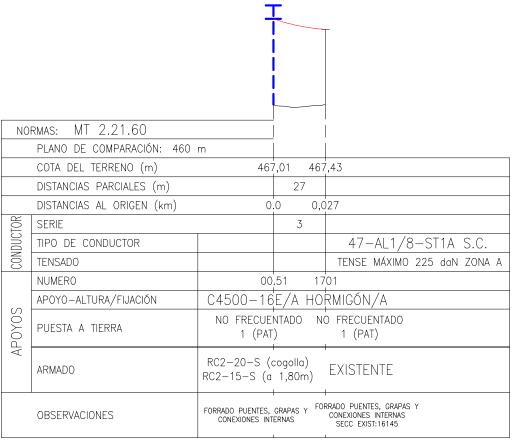


SUSTITUCIÓN APOYO Nº 51 EN CIRCUITO LAAT 13,2 KV "ESTELLA-ALLO"

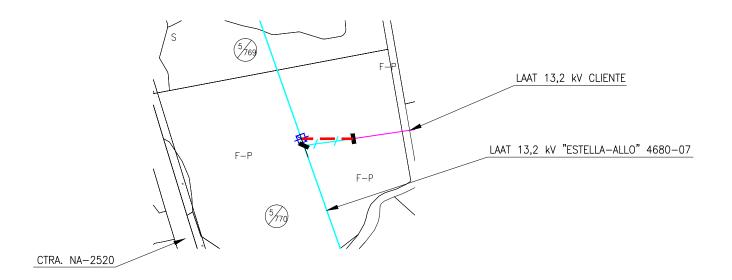
CLAVE: 4680-07 Y 4672-04

LEYENDA DE CULTIVOS


F-P FORESTAL-PASTOS
P PASTOS
F FORESTAL


S/F-P SECANO/FORESTAL-PASTOS

EL INGENIERO	FECHA DIBUJADO	JUNIO 2019 F.M.L. SL	DEL CIRCUITO "ESTELLA—ALLO" EN T.M. DICASTILLO (NAVARRA)	ANULA ARCHIVO HOJA 3 DE 5	ESCALA: E.V.=1/50 0 5m E.H.=1/2.1	10m
FERMÍN MANRIQUE LARRAZA I.C.C.P.	IBERDROLA DISTRIBUCIÓN ELÉCTE	IBE	RDROLA DISTRIBUCIÓN ELÉCTRICA, S.A.U. ingeniería	N°	REV	


SUSTITUCIÓN APOYO Nº 51 EN CIRCUITO LAAT 13,2 KV "ESTELLA-ALLO"

CLAVE: 4680-07 Y 4672-04

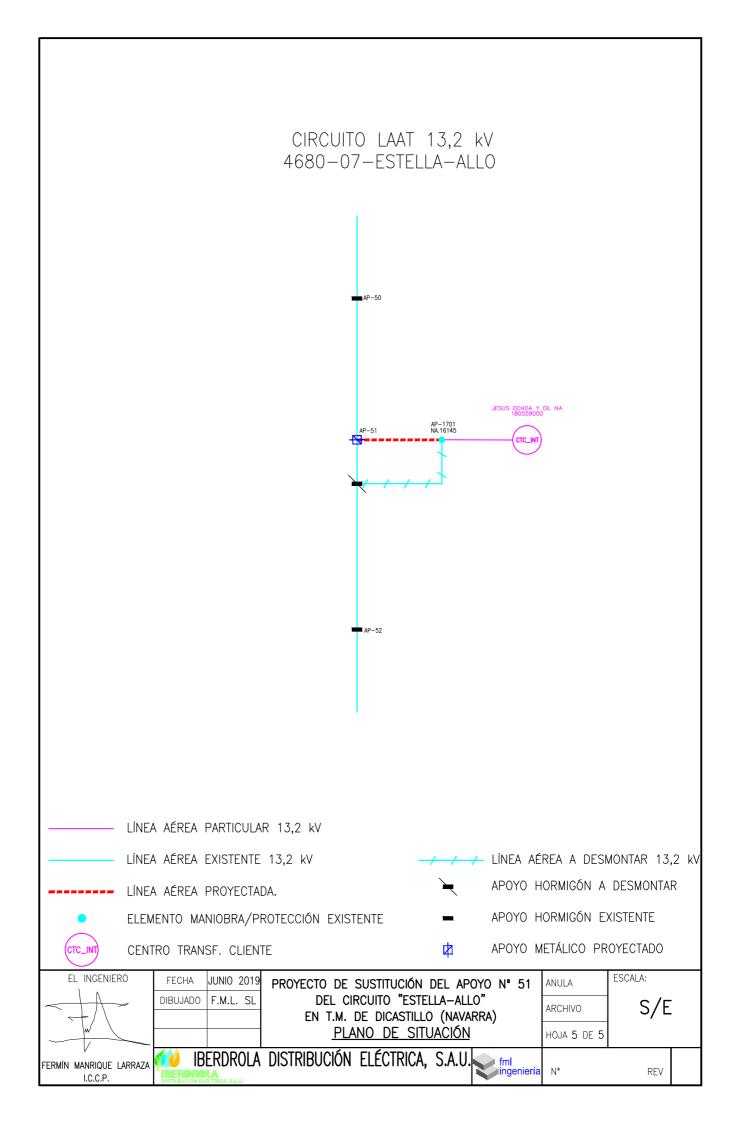
U70 YB 20 AL U70 YB 20 AL

LEYENDA DE CULTIVOS

FORESTAL-PASTOS

PASTOS

S/F-P SECANO/FORESTAL-PASTOS



PROYECTO DE SUSTITUCIÓN DEL APOYO Nº 51 DEL CIRCUITO "ESTELLA-ALLO" EN T.M. DICASTILLO (NAVARRA)

PLANO DE PLANTA Y PERFIL DERIVACIÓN

ANULA	ESCALA: E.V.=1/500				
ARCHIVO	0 5m				
HOJA 4 DE 5	E.H.=1/2.00 0 20m 4				

IBERDROLA DISTRIBUCIÓN ELÉCTRICA, S.A.U. fml ingeniería Nº

PROYECTO DE SUSTITUCIÓN DEL APOYO № 51 DE LA LÍNEA AÉREA DE ALTA TENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA-ALLO"

TÉRMINO MUNICIPAL DE DICASTILLO

PROVINCIA DE NAVARRA

DOCUMENTO V: Presupuesto

AUTOR DEL PROYECTO: FERMÍN MANRIQUE LARRAZA

COLEGIADO № 25.294 DEL C.I.C.C

Índice del presupuesto

1.	Presupuesto y mediciones	22
2.	Resumen de presupuesto	23

1. Presupuesto y mediciones.

MEDICIONES Y PRESUPUESTO

SUSTITUCIÓN APOYO N°51 DE LÍNEA AÉREA A.T. 13,2 KV CIRCUITO "ESTELLA-ALLO" TÉRMINO MUNICIPAL DE DICASTILLO (NAVARRA)

L.A.M.T.

Recurso	RECURSO CONTRATACIÓN	Med	Precio	Cantidad	TOTAL
EEDIA POZ 0 CEL C 0 2 1 0 0	APOYO CELOSIA C 4500-16 EMPOTRAR	UD	1.628,79 €	1	1.628,79€
EEDIA POZOA VIC33300	FORRADO AP. AMARRE PUENTE CORRIDO LA = 110 POR FASE	UD	272,61 €	9	2.453,47 €
EEDIAPOZ0AVIC41000	FORRADO AMARRE PUENTE Y SUSPENSION FASE CENTRAL	UD	195,26 €	1	195,26€
EEDICRUB0CELC02200	INST/SUST CRUCETA RC2-20-S	UD	221,81 €	1	221,81€
EEDICRUB0CELC02000	INST/SUST CRUCETA RC2-15-S	UD	201,54 €	1	201,54 €
EEDICRUZ0AISC08900	INST/SUST CADENA BASTON LARGO AVIFAU ESPIRAL IV	UD	67,78€	12	813,36 €
EEDIPATZ0TLAC01900	PAT ELECTRODO BASICO PICA 14/2000	UD	48,98€	1	48,98€
EEDICRUZ0AISC08700	INST/SUST AISLADOR PUENTE APOYO IV 20KV	UD	38,12€	1	38,12€
EEDIDLAZ0HORU00200	A CHAT/DESMONT POSTE HORMIGON (UNIDAD)	UD	221,05€	1	221,05€
EEDITRAZ0TETU06900	TET APERTURA/CIERRE PUENTES SIN CARGA	UD	331,50€	2	663,00€
EEDIDLAZ0TLCU02300	A CHAT/DESMONT CRUCETA MADERA POR SUSTITUCION	UD	78,00€	1	78,00€
EEDIDLAZ0CELU00500	DESMONTAJE/REUTILIZ. A.P. CELOSIA-CRUCETAS (KG)	KG	0,35€	242	84,70€
EEDIDLAZ0TLCU01300	ACHAT/DESMONT CONDUCTOR DESNUDO DE LA < 70	M	0,27 €	27	7,37 €
EEDITRAB0TLCC04000	TENDIDO SC/LA-56	M	1,14 €	27	30,78€
EEDICOMZ0SERU07100	CARTEL/AVISO CORTE DE SUMINISTRO (POR LINEA)	UD	34,87 €	1	34,87 €
	TOTAL RELACIÓN VALORADA				6.721,10 €

2. Resumen de presupuesto.

SUSTITUCIÓN APOYO Nº51 DE LÍNEA AÉREA A.T. 13,2 KV CIRCUITO "ESTELLA-ALLO" TÉRMINO MUNICIPAL DE DICASTILLO (NAVARRA)

RESUMEN DE PRESUPUESTO

TOTAL PRESUPUESTO (P.E.M.)	6.721,10 €

Asciende el presente presupuesto a :

SEIS MIL SETECIENTOS VENTIUN EUROS CON DIEZ CÉNTIMOS

Pamplona, Junio de 2.019

El Ingeniero de Caminos

Fdo: D. Fermín Manrique Larraza Colegiado Nº: 25,294 del C.I.C.C.P

PROYECTO DE SUSTITUCIÓN DEL APOYO № 51 DE LA LÍNEA AÉREA DE ALTA TENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA-ALLO"

TÉRMINO MUNICIPAL DE DICASTILLO

PROVINCIA DE NAVARRA

DOCUMENTO VI: Estudio básico de seguridad y salud

AUTOR DEL PROYECTO: FERMÍN MANRIQUE LARRAZA

COLEGIADO Nº 25.294 DEL C.I.C.C.P

Índice del estudio de seguridad y salud

1.	Objet	0	26
2.	Camp	oo de aplicación	26
3.	Norm	ativa aplicable	26
	3.1.	Normas Oficiales	
	3.2.	Normas Particulares.	
4.	Desar	rollo del estudio	27
	4.1.	Aspectos generales	27
	4.2.	Identificación de riesgos	28
	4.3.	Medidas de Prevención necesarias para evitar riesgos	28
	4.4.	Protecciones.	28
	4.5.	Características generales de la obra	29
	4.5.1.	Descripción de la obra y situación	29
	4.5.2.	Suministro de energía eléctrica	29
	4.5.3.		
	4.5.4.	Servicios higiénicos	29
	4.6.	Previsiones e informaciones útiles para trabajos posteriores	30
	4.7.	Medidas específicas relativas a trabajos que implican riesgos específicos para la Seguridad y S	alud
	de los tr	abajadores	30

1. Objeto

El objeto de este documento es dar cumplimiento al Real Decreto 1627/1997, de 24 de Octubre, por el que se establecen disposiciones mínimas de seguridad y salud en las obras de construcción, identificando, analizando y estudiando los posibles riesgos laborales que puedan ser evitados, identificando las medidas técnicas necesarias para ello; relación de los riesgos que no pueden eliminarse, especificando las medidas preventivas y protecciones técnicas tendentes a controlar y reducir dichos riesgos.

Asimismo este Estudio Básico de Seguridad y Salud da cumplimiento a la Ley 31/1995, de 8 de noviembre, de Prevención de Riesgos Laborables en lo referente a la obligación del empresario titular de un centro de trabajo de informar y dar instrucciones adecuadas, en relación con los riesgos existentes en el centro de trabajo y las medidas de protección y prevención correspondientes.

En base a este Estudio Básico de Seguridad y Salud, el Contratista elaborará su Plan de Seguridad y Salud, en el que tendrá en cuenta las circunstancias particulares de los trabajos objeto del contrato.

2. Campo de aplicación

El presente Estudio Básico de Seguridad y Salud es de aplicación en las obras de construcción de "Líneas aéreas" que se realizan dentro del proyecto.

3. Normativa aplicable

3.1. Normas Oficiales.

La relación de normativa que a continuación se presenta no pretende ser exhaustiva, se trata únicamente de recoger la normativa legal vigente en el momento de la edición de este documento, que sea de aplicación y del mayor interés para la realización de los trabajos objeto del contrato al que se adjunta este Estudio Básico de Seguridad y Salud.

- Ley 31/1995, de 8 de noviembre, de Prevención de Riesgos Laborables.
- Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Centrales Eléctricas, Subestaciones y Centros de Transformación, aprobado por el Real Decreto de 12-11-82 y publicado en el BOE núm. 288 del 1-12-82 y las Instrucciones Técnicas Complementarias aprobadas por Orden de 6-7-84, y publicado en el BOE núm. 183 del 1-8-84 y su última modificación de Orden Ministerial de 10 de Julio 2000, publicada en el BOE nº 72 de 24 de julio de 2000 y la corrección de erratas publicadas en el BOE nº 250 del 18 de octubre de 2000.
- Ley 8/1980 de 20 de julio. Estatuto de los Trabajadores.
- Real Decreto 3275/1982 Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Centrales Eléctricas, Subestaciones y Centros de Transformación, y las Instrucciones Técnicas Complementarias.

- Real Decreto Legislativo 1/1994, de 20 de junio. Texto Refundido de la Ley General de la Seguridad Social.
- Real Decreto 39/1995, de 17 de enero. Reglamento de los Servicios de Prevención.
- Real Decreto 485/1997, de 14 de Abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo.
- Real Decreto 486/1997, de 14 de abril. Disposiciones mínimas de seguridad y salud en los lugares de trabajo.
- Real Decreto 487/1997, de 14 de abril, sobre disposiciones mínimas de seguridad y salud relativas a la manipulación manual de cargas que entrañe riesgos, en particular dorsolumbares, para los trabajadores.
- Real Decreto 773/1997, de 30 de mayo, sobre disposiciones mínimas de seguridad y salud relativas a la utilización por los trabajadores de los equipos de protección individual.
- Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo.
- Real Decreto 1627/1997, de octubre. Disposiciones mínimas de seguridad y salud en las obras de construcción.
- Ordenanza de Seguridad e Higiene en el trabajo año 1971, capítulo VI.
- Cualquier otra disposición sobre la materia actualmente en vigor o que se promulgue durante la vigencia de este documento.

3.2. Normas Particulares.

- Prescripciones de Seguridad para trabajos mecánicos y diversos de AMYS.
- Prescripciones de Seguridad para trabajos y maniobras en instalaciones eléctricas AMYS.
- Normas y Manuales Técnicos de Empresa que puedan afectar a las actividades desarrolladas por el contratista, cuya relación se adjuntará a la petición de oferta.

4. Desarrollo del estudio

4.1. Aspectos generales.

El Contratista acreditará ante la Dirección Facultativa de la obra, la adecuada formación y adiestramiento de todo el personal de la obra en materia de Prevención y Primeros Auxilios. Así mismo, la Dirección Facultativa, comprobará que existe un plan de emergencia para atención del personal en caso de accidente y que han sido contratados los servicios asistenciales adecuados. La dirección y teléfonos de estos servicios deberá ser colocada de forma visible en lugares estratégicos de la obra.

Antes de comenzar la jornada, los mandos procederán a planificar los trabajos de acuerdo con el plan establecido, informando a todos los operarios claramente las maniobras a realizar, los posibles riesgos existentes y las medidas preventivas y de protección a tener en cuenta para eliminarlos o minimizarlos. Deben cerciorarse de que todos lo han entendido.

4.2. Identificación de riesgos.

En función de las obras a realizar y de las fases de trabajo de cada una de ellas, se indican en los Anexos los riesgos más comunes, sin que su relación sea exhaustiva.

En el Anexo 1 se contemplan los riesgos en las fases de pruebas y puesta en servicio de las nuevas instalaciones, como etapa común para toda obra nueva.

En el Anexo 2 se identifican los riesgos específicos para la siguiente obra:

-Líneas aéreas.

4.3. Medidas de Prevención necesarias para evitar riesgos.

En los Anexos se incluyen, junto con algunas medidas de protección, las acciones tendentes a evitar o disminuir los riesgos en los trabajos, además de las que con carácter general se recogen a continuación:

- Protecciones y medidas preventivas colectivas, según normativa vigente relativa a equipos y medios de seguridad colectiva
- Prohibir la permanencia de personal en la proximidad de las máquinas en movimiento
- Prohibir la entrada a la obra a todo el personal ajeno
- Establecer zonas de paso y acceso a la obra
- Balizar, señalizar y vallar el perímetro de la obra, así como puntos singulares en el interior de la misma
- Establecer un mantenimiento correcto de la maquinaria
- Controlar que la carga de los camiones no sobrepase los límites establecidos y reglamentarios
- Utilizar andamios y plataformas de trabajo adecuados.
- Evitar pasar o trabajar debajo de la vertical de otros trabajos

4.4. Protecciones.

- ⇒ Ropa de trabajo:
 - Ropa de trabajo, adecuada a la tarea a realizar por los trabajadores del contratista
- ⇒ Equipos de protección. Se relacionan a continuación los equipos de protección individual y colectiva de uso más frecuente en los trabajos que desarrollan para Iberdrola. El Contratista deberá seleccionar aquellos que sean necesarios según el tipo de trabajo.
 - •Equipos de protección individual (EPI), de acuerdo con normas UNE EN:
 - Calzado de seguridad.
 - Casco de seguridad.
 - Guantes aislantes de la electricidad BT y AT.
 - Guantes de protección mecánica.
 - Pantalla contra proyecciones.
 - Gafas de seguridad.

- Cinturón de seguridad.
- Discriminador de baja tensión.
- Protecciones colectivas.
- Señalización: cintas, banderolas, etc.
- Cualquier tipo de protección colectiva que se pueda requerir en el trabajo a realizar.
- ⇒ Equipo de primeros auxilios:
 - Botiquín con los medios necesarios para realizar curas de urgencia en caso de accidente.
 Ubicado en el vestuario u oficina, a cargo de una persona capacitada designada por la Empresa Contratista.
- ⇒ Equipo de protección contra incendios:
- ⇒ Extintores de polvo seco clase A, B, C.

4.5. Características generales de la obra.

En este punto se analizan con carácter general, independientemente del tipo de obra, las diferentes servidumbres o servicios que se deben tener perfectamente definidas y solucionadas antes del comienzo de las obras.

4.5.1. Descripción de la obra y situación.

Dirección de la obra: La instalación proyectada se encuentra ubicada en parcelas pertenecientes al polígono 5 situado en el Término Municipal de Dicastillo, en la Provincia de Navarra.

Tipo de obra: Línea aérea en 13,2 kV.

Se deberán tener en cuenta las dificultades que pudieran existir en los accesos, estableciendo los medios de transporte y traslado más adecuados a la orografía del terreno.

4.5.2. Suministro de energía eléctrica.

El suministro de energía eléctrica provisional de obra será facilitado por la empresa constructora, proporcionando los puntos de enganche necesarios.

4.5.3. Suministro de agua potable.

El suministro de agua potable será a través de las conducciones habituales de suministro en la región, zona, etc., en el caso de que esto no sea posible dispondrán de los medios necesarios (cisternas, etc.) que garantice su existencia regular desde el comienzo de la obra.

4.5.4. Servicios higiénicos.

Dispondrá de servicios higiénicos suficientes y reglamentarios. Si fuera posible, las aguas fecales se conectarán a la red de alcantarillado, en caso contrario, se dispondrá de medios que faciliten su evacuación o traslado a lugares específicos destinados para ello, de modo que no se agreda al medio ambiente.

4.6. Previsiones e informaciones útiles para trabajos posteriores.

Entre otras se deberá disponer de:

- Instrucciones de operación normal y de emergencia.
- Señalización clara de mandos de operación y emergencia.
- Dispositivos de protección personal y colectiva para trabajos posteriores de mantenimiento.
- Equipos de rescate y auxilio para casos necesarios.

4.7. Medidas específicas relativas a trabajos que implican riesgos específicos para la Seguridad y Salud de los trabajadores.

En el Anexo 1 se recogen las medidas específicas para las etapas de pruebas y puesta en servicio de la instalación, en las que el riesgo eléctrico puede estar presente.

ANEXO 1. PRUEBA Y PUESTA EN SERVICIO DE LAS INSTALACIONES

Actividad	Riesgo	Acción preventiva y protecciones		
1. Pruebas y puesta en servicio	• Golpes	 Mantenimiento equipos y utilización de EPI's. 		
	Heridas	Utilización de EPI's.		
	 Caídas de objetos 	 Adecuación de las cargas. 		
	 Atrapamientos 	• Control de maniobras. Vigilancia continuada. Utilización de EPI's.		
		 Utilización de EPI's. 		
	 Contacto eléctrico directo e 	Coordinar con la Empresa.		
	indirecto en AT y BT. Arco	Suministradora definiendo. las		
	eléctrico en AT y BT. Elementos	maniobras eléctricas.		
	candentes y quemaduras	Aplicar las 5 Reglas de Oro.		
		Apantallar en caso de proximidad		
		los elementos en tensión.		
		Informar por parte del Jefe de		
		Trabajo a todo el personal, la		
		situación en la que se encuentra la		
		zona de trabajo y donde se		
		encuentran los puntos en tensión		
		más cercanos.		

ANEXO 2. LÍNEAS AÉREAS

Riesgos y medios de protección para evitarlos o minimizarlos

Actividad	Riesgo	Acción preventiva y protecciones
1.Acopio, carga y descarga	Golpes	Mantenimiento equipos
	Heridas	Utilización de EPI's
	Caídas de objetos	Adecuación de las cargas
	Atrapamientos	Control de maniobras Vigilancia
		continuada. Utilización de EPI´s
2.Excavación, hormigonado e	Caídas al mismo nivel	Orden y limpieza
izado LOS APOYOSs	Caídas a diferente nivel	Utilización de equipos de protección
		individual y colectiva, según Normativa
		Utilización de EPI´s
	Caídas de objetos	Entibamiento
	Desprendimientos	Utilización de EPI´s
	Golpes y heridas	Utilización de EPI´s
	Oculares, cuerpos	
	extraños	Vallado de seguridad
	Riesgos a terceros	Protección huecos
		Utilizar fajas de protección lumbar
	Sobreesfuerzos	Control de maniobras y vigilancia
		continuada
	Atrapamientos	
3. Montaje de armados	Caídas desde altura	Utilización de equipos de protección
		individual y colectiva, según Normativa
		vigente
	Desprendimiento de	Revisión de elementos de elevación y
	carga	transporte
	Rotura de elementos de	Dispositivos de control de cargas y
	tracción	esfuerzos soportados
	Golpes y heridas	Utilización de EPI´s
	Atrapamientos	Control de maniobras y vigilancia
	6 (1 1 1 1 1	continuada
	Caídas de objetos	Utilización de EPI´s
4. Cruzamientos	Caídas desde altura	Utilización de equipos de protección
		individual y colectiva, según Normativa
	Calpas y baridas	vigente Utilización de EPI´s
	Golpes y heridas	
	Atrapamientos	Control de maniobras y vigilancia continuada
	Caídas de objetos	Utilización de EPI's
	Sobreesfuerzos	Utilizar fajas de protección lumbar
	JUDI EESIUEI 205	Colocación de pórticos y protecciones
	Eléctrico	aislante. Coordinar con la Empresa
	Liectrico	Suministradora.
		Vigilancia continuada y señalización de
	Riesgos a terceros	riesgos
	mesgos a terceros	1163803

5. Tendido de conductores.	Vuelco de maquinaria	Acondicionamiento de la zona de		
(Desmontaje de conductores)		ubicación, anclaje correcto de las		
		máquinas de tracción.		
	Caídas desde altura	Utilización de equipos de protección		
		individual y colectiva, según Normativa		
		vigente		
	Riesgo eléctrico	Puesta a tierra de los conductores y		
		señalización de ella		
	Golpes y heridas	Utilización de EPI´s		
	Atrapamientos	Control de maniobras y vigilancia		
		continuada		
	Caídas de objetos	Utilización de EPI´s		
	Sobreesfuerzos	Utilizar fajas de protección lumbar		
		Vigilancia continuada y señalización de		
	Riesgos a terceros	riesgos		
6. Tensado y engrapado	Caídas desde altura	Utilización de equipos de protección		
		individual y colectiva, según Normativa		
		vigente		
	Golpes y heridas	Utilización de EPI's		
	Atrapamientos	Control de maniobras y vigilancia		
		continuada		
	Caídas de objetos	Utilización de EPI's		
	Sobreesfuerzos	Utilizar fajas de protección lumbar		
		Vigilancia continuada y señalización de		
	Riesgos a terceros	riesgos		
		(Análisis previo de las condiciones de tiro		
		y equilibrio y atirantado o medios de		
		trabajo específicos)		
7. Pruebas y puesta en servicio	Ver Anexo 1	Ver Anexo 1		

Pamplona, junio de 2019 El Ingeniero de Caminos

Fdo: FERMÍN MANRIQUE LARRAZA Colegiado №: 25.294 del C.I.C.C.P

PROYECTO DE SUSTITUCIÓN DEL APOYO № 51 DE LA LÍNEA AÉREA DE ALTA TENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA-ALLO"

TÉRMINO MUNICIPAL DE DICASTILLO

PROVINCIA DE NAVARRA

DOCUMENTO VII: Relación de Bienes y Derechos Afectados

AUTOR DEL PROYECTO: FERMÍN MANRIQUE LARRAZA

COLEGIADO № 25.294 DEL C.I.C.C.P

Indice de la relación	AD DIDDE	v aprochoe	SUPPLIANCE
Índice de la relación	ac piciles	y uciculius	aicciaucs

TÉRMINO OBSERVACIONES Superficie de servidumbre (m²) 114,53 Longitud Tendido (m) 27 Ocupación A poy o (m²) RELACIÓN DE BIENES Y DERECHOS AFECTADOS DEL PROYECTO DE SUSTITUCIÓN DEL APOYO Nº 51 DE LALÍNEA ÁFREA DE ALTATENSIÓN DE 13,2 KV EN EL CIRCUITO "ESTELLA ALLO", 1,37 LAAT Naturaleza/ Cultivo SECANO/ FORESTAL-PASTOS 21 Polig. 2 MUNICIPAL DE DICASTILLO (NAVARRA) NAVARRA PAMPLONA TR. PICO DE ORI, Nº 1, 8º IZDA CALLERÍO ALTZAINA, Nº 20, 3º DCH TITULAR Y DOMICILIO 15783173K 15789635C LUQUIN,SOLCHAGA,FRANCISCO JAVIER LUQUIN,SOLCHAGA,ÁNGEL FINCA (Según proyecto) 5/770 DICASTILLO