PLANTEAMIENTO ELÉCTRICO EN NAVARRA

DATOS DE PARTIDA

En el cuadro siguiente figuran los datos del Informe Anual de Red Eléctrica relativos a la generación eléctrica en el Sistema Eléctrico Peninsular y en Navarra en 2014. Sólo se han recogido los datos de generación de energías renovables

DATOS DE REE DE 2014

Tipo de energía	SISTEMA E	LECTRICO P	ENINSULAR	NAVARRA					
	Potencia	Producción	horas	Potencia	Producción	horas	% de	Producción Media	
	instalada	anual	equivalentes	instalada	anual	equivalentes	potencia	diaria MWh	
Hidráulica (1)	MW 17.791	GWh 35.860	h 2.016	MW 77	GWh 127	h 1.649	0,43	348	
Hidráulica (2)	2.105	7.067	3.357	171	537	3.140	8,12	1.471	
Eólica	22.845	50.630	2.216	1.016	2.425	2.387	4,45	664	
Fotovoltaica	4.428	7.794	1.760	161	298	1.851	3,64		
Solar térmica	2.300	4.959	2.156	0	0	0	0,00		
Térmica renovable	1.012	4.729	4.673	47	306	6.511	4,64	838	
Residuos Pamplona					27				
Total renovables	50.481	111.039	2.200	1.472	3.720	2.527	2,92	3.322	
Total	102.262	253.564	2.480	2.884	4.772	1.655	2,82		
% de renovables		44			78				
Demanda anual		243.530			4.748				
Demanda diaria MWh	Demanda diaria MWh				13.008				
Potencia media diaria	MWh	27.800			542				
Potencia punta	38.948			759					

Se han incluido en el cuadro como Residuos Pamplona los datos de generación de la depuradora de Arazuri y del vertedero de Góngora, que suponen el autoabastecimiento eléctrico de la primera y el 377,3 % del segundo. En ambos casos la energía es renovable, generada con los gases de la fermentación de los lodos en Arazuri y con los extraídos de la masa de basuras enterrada en Góngora y que suponen un modelo de aprovechamiento energético.

Puede verse que la generación con renovables en Navarra alcanza el 78 % de la demanda, muy superior a la media nacional del 44 %.

Se han calculado las horas equivalentes a potencia máxima, el porcentaje que supone la potencia de Navarra, de cada tipo de energía y la producción media diaria (en MWh).

Se han recogido también los datos de demanda anual (GWh), demanda diaria (MWh), potencia media diaria de la demanda en 24 horas y la potencia instantánea máxima, alcanzada el 4 de febrero (38.948 MW).

La punta histórica de la demanda fue de 45.450 MW, el 17 de diciembre de 2007, para Navarra la parte proporcional sería de 886 MW.

La potencia eólica instalada en Navarra (1.016 MW) es superior a la máxima demanda del 2015 (741 MW), e incluso a la máxima demanda histórica (886 MW). La diferencia es aún mayor si consideramos el total de la potencia renovable instalada (1.472 MW). Ello pone de manifiesto la necesidad, en días de viento, de exportar energía al sistema.

POSIBLES OBJETIVOS ENERGÉTICOS

Un objetivo energético que daría seguridad al sistema eléctrico español es aumentar la generación de energías renovables. Hay que tener en cuenta que las energías hidráulica, eólica y fotovoltaica tienen costos de explotación muy reducidos, por lo que, una vez amortizadas las instalaciones, el costo marginal es muy bajo. En Navarra hay centrales hidroeléctricas en funcionamiento desde 1895, como la de Eguillor, y eólicas desde 1993, como el Perdón, que ponen de manifiesto la gran duración de estas instalaciones. La fotovoltaica, que no tiene piezas en movimiento, tendrá lógicamente una gran duración.

En estas condiciones, y si el costo de generación encaja en el medio del pool eléctrico, es bueno hacer centrales eólicas y fotovoltaicas. Las hidráulicas son más difíciles de promover por la necesidad de construir embalses, canales etc. que requieren tramitaciones ambientales que, en estos momentos, no son fáciles de conseguir.

En el caso de Navarra los objetivos de energía eléctrica podrían ser:

1 Producir el 100 % de la demanda con energía renovable.

Ello requeriría un aumento de la producción en 4.772 – 3.720 = 1.052 GWh/año, que con la media de horas de funcionamiento de la actual eólica, supone un potencia de 1.052*1000/2.387 = 441 MW. El total instalado sería de 1.016 + 441 = 1.457 MW. En Navarra existen emplazamientos en los que es posible instalar esa potencia, incluso con mayor número de horas de funcionamiento.

Hay que señalar que producir el 100 % del consumo anual con energías renovables es un objetivo importante, pero no supone tener autonomía energética porque se precisa del sistema eléctrico peninsular, ya que hay horas en que se le aporta energía y horas en que se le demanda y este funcionamiento requiere que el sistema lo permita.

El proyecto eólico de Navarra, redactado por Energía Hidroeléctrica de Navarra (EHN) en1993, se propuso ese objetivo de conseguir el 100 % de la demanda con energías renovables para el año 2010 pero el crecimiento del consumo en los años 1993-2005 fue muy superior a lo estimado en el estudio y por eso en 2014 la producción con renovables fue del 78 % en vez del 100 %.

2 Producir más del 100 % de la demanda con energía renovable.

Hemos visto que aumentando la potencia eólica en 441 MW se puede generar todo el consumo eléctrico de Navarra. Dadas las condiciones de viento existentes es posible instalar una mayor potencia eólica que permitiese tener un saldo positivo, de modo que Navarra "exportase" energía eléctrica.

Suponiendo un aumento de 1000 MW, en nuevos parques y en repotenciaciones de algunos de los existentes se tendría un saldo de anual de unos 1.150 GWh, que a un precio medio del pool

en 2014 de 0,04214 €/kWh en el mercado diario supone un saldo de 48,46 M€/año. La potencia eólica sería de unos 2.000 MW.

Ese mayor margen de producción permitiría cubrir el aumento de la demanda que es probable que se produzca cuando se generalicen los coches eléctricos, así como cubrir futuros aumentos de la demanda.

ESTUDIO DE LA DEMANDA Y DE LA GENERACIÓN CON RENOVABLES EN 2015

Para concretar las posibilidades de generación con renovables se ha estudiado con detalle el año 2015 analizando, en cada hora de cada día del año, la demanda, la generación de energía eólica, solar, hidráulica y térmica de biomasa. Se ha calculado también el déficit de energía en cada hora es base a la potencia eólica instalada (1.016 MW) y a las posibles ampliaciones a 1.457 y 2.000 MW.

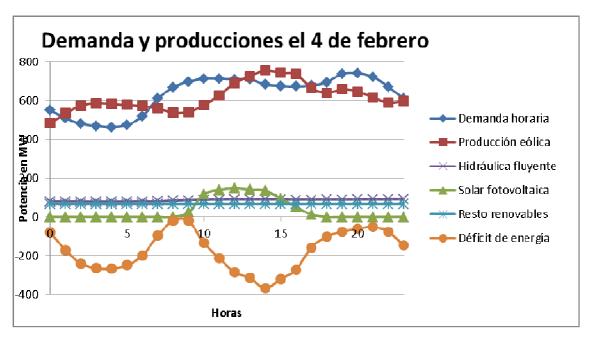
	POTENCIA EÓLICA 1.016 MW			POTENCIA EÓLICA 1.457 MW				POTENCIA EÓLICA 2.000 MW				
	Días con producci	ón	POTE	NCIA	Días con producci	ón	POTE	NCIA	Días con producci	ón	POTE	NCIA
Mes	Déficit	Exceso	Déficit	Exceso	Déficit	Exceso	Déficit	Exceso	Déficit	Exceso	Déficit	Exceso
	nº	nº	MW	MW	nº	nº	MW	MW	nº	nº	MW	MW
Enero	19	12	544	-485	13	18	540	-791	10	21	536	-1.176
Febrero	17	11	564	-434	11	17	562	-729	11	17	561	-1.102
Marzo	14	17	471	-526	10	21	467	-851	8	23	461	-1.251
Abril	21	9	424	-580	15	15	420	-877	11	19	414	-1.243
Mayo	17	14	485	-524	13	18	483	-848	9	22	483	-1.246
Junio	23	7	488	-457	22	8	480	-776	16	14	471	-1.169
Julio	25	6	553	-337	19	12	542	-625	12	19	529	-1.015
Agosto	26	5	466	-334	20	11	455	-608	14	17	443	-999
Septiembre	25	5	495	-340	15	15	491	-637	9	21	487	-1.012
Octubre	22	9	502	-407	17	14	501	-718	13	18	500	-1.111
Noviembre	22	8	506	-400	20	10	502	-689	16	14	501	-1.047
Diciembre	30	1	555	-437	28	3	550	-747	28	3	544	-1.129
Total	261	104			203	162			157	208		

Como se disponía de los valores horarios de producción eólica, hidráulica fluyente y solar de las centrales de Acciona se ha calculado el total de Navarra en base a la relación de las potencias instaladas de Acciona y del Total.

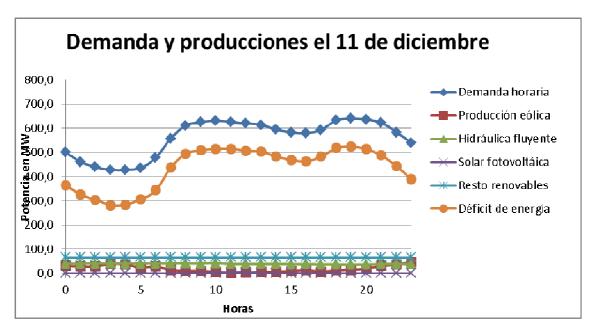
La potencia eólica de Acciona es de 957,62 MW (incluye 70 MW de Aragón) y con su curva de generación se ha calculado la producción con 1.016, 1.457 y 2.000 MW

La potencia hidráulica fluyente de Acciona es de 90 MW y con su curva de generación se ha calculado la del total de los 200 MW de Navarra. Para los 48 MW hidroeléctricos con regulación se ha supuesto una potencia constante del 60 %, que supone 29 MW.

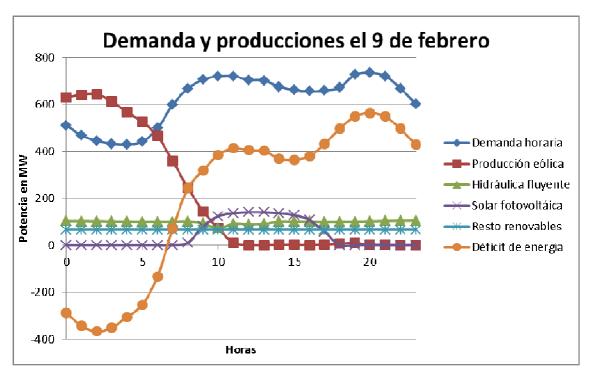
La potencia solar fotovoltaica de Acciona es de 1 MW y con su curva de generación se ha calculado la del total de los 161 MW de Navarra.


Para los 47 MW de energía térmica renovable se ha supuesto una potencia constante del 80 %, que supone 37 MW.

El déficit horario se ha calculado como la diferencia entre la demanda y la producción con renovables. Un resultado positivo indica que la demanda es mayor que la generación y que, por


tanto se precisaría importar energía del sistema eléctrico peninsular. Un valor negativo indica que hay exceso de producción y que, por tanto se precisa exportar energía al sistema.

Puede verse que a medida que aumenta la potencia eólica se reduce el número de días con déficit, disminuye el déficit positivo y aumenta el negativo.


A continuación figuran las curvas diarias del día de mayor demanda (4 de febrero) y del día mayor déficit de energía (11 de diciembre).

DATOS HORARIOS DE DEMANDA Y GENERACIÓN 4 DE FEBRERO 2015									
	Demanda		Producción re	enovabl	es	Déficit			
Hora		eólica	eólica Hidráulica Solar Otra		Otras				
	MW	MW	MW	MW	MW	MW			
0	549	484	80	0	66	-81			
1	509	533	80	0	66	-171			
2	480	574	80	0	66	-240			
3	469	586	79	0	66	-263			
4	462	583	79	0	66	-266			
5	475	578	79	0	66	-248			
6	519	573	80	0	66	-200			
7	609	559	81	0	66	-97			
8	668	537	84	0	66	-20			
9	697	541	86	24	66	-20			
10	712	575	89	116	66	-133			
11	712	627	90	140	66	-212			
12	709	689	91	148	66	-285			
13	709	725	91	141	66	-314			
14	683	755	91	137	66	-367			
15	675	743	90	95	66	-320			
16	673	736	90	52	66	-272			
17	677	665	90	13	66	-157			
18	694	639	90	0	66	-101			
19	738	658	90	0	66	-76			
20	741	647	90	0	66	-62			
21	722	616	90	0	66	-51			
22	671	590	91	0	66	-76			
23	609	597	91	0	66	-145			
Total	15.161	14.809	2.071	865	1.594	-4.177			
Máximos	741	755	91	148	66	-367			

DATOS HORARIOS DE DEMANDA Y GENERACIÓN 11 DE DICIEMBRE 2015									
	Demanda		Producción re	es	Déficit				
Hora		eólica	Hidráulica	Solar	Otras				
	MW	MW	MW	MW	MW	MW			
0	500	31	39	0	66	364			
1	461	29	40	0	66	326			
2	439	29	40	0	66	304			
3	428	39	41	0	66	281			
4	427	37	40	0	66	284			
5	436	24	40	0	66	305			
6	478	28	40	0	66	344			
7	558	13	41	0	66	438			
8	611	10	40	0	66	495			
9	625	10	40	0	66	508			
10	632	7	42	2	66	515			
11	626	2	38	4	66	515			
12	620	4	39	4	66	507			
13	614	5	38	1	66	503			
14	594	7	39	0	66	483			
15	582	9	38	0	66	468			
16	580	13	38	0	66	463			
17	593	7	37	0	66	483			
18	633	12	37	0	66	518			
19	641	15	36	0	66	523			
20	636	20	36	0	66	514			
21	622	31	38	0	66	487			
22	583	36	38	0	66	443			
23	541	47	39	0	66	389			
Total	13.461	463	935	12	1.594	10.458			
Máximos	641	47	42	4	66	523			

DATOS HORARIOS DE DEMANDA Y GENERACIÓN 11 DE DICIEMBRE 2015									
	Demanda		Producción renovables						
Hora		eólica	Hidráulica	Solar	Otras				
	MW	MW	MW	MW	MW	MW			
0	512	629	104	0	66	-288			
1	468	642	103	0	66	-343			
2	445	642	103	0	66	-367			
3	432	613	102	0	66	-349			
4	430	567	101	0	66	-305			
5	441	526	101	0	66	-252			
6	500	465	101	0	66	-132			
7	598	359	101	0	66	72			
8	668	245	102	11	66	243			
9	705	145	94	81	66	319			
10	721	72	73	124	66	386			
11	721	11	93	136	66	414			
12	705	1	90	142	66	405			
13	702	1	92	141	66	402			
14	676	2	101	137	66	370			
15	662	2	101	128	66	365			
16	656	1	101	108	66	379			
17	659	3	100	58	66	432			
18	673	7	101	1	66	497			
19	727	11	101	0	66	548			
20	736	3	102	0	66	564			
21	721	2	104	0	66	548			
22	668	1	105	0	66	496			
23	602	1	106	0	66	429			
Total	14.827	4.951	2.383	1.067	1.594	4.832			
Máximos	736	642	106	142	66	564			

El 4 de febrero, a pesar de ser el día de mayor demanda, hay un exceso de producción renovable que da lugar a un excedente que se exporta al sistema,

En cambio el 11 de diciembre las producción eólica y solar son muy reducidas y se precisa importar del sistema una cantidad importante de energía.

En las curvas y datos se aprecia lo reducido de la aportación solar y la importancia de la energía eólica, que es la base del suministro con renovables.

También se pone de manifiesto la vinculación del suministro al Sistema eléctrico penisular del que se toma o cede energía a lo largo del día. Esa vinculación es importante porque la superficie de Navarra es reducida y las condiciones de viento son similares en toda ella. En los datos y gráficos del 9 de febrero se aprecia como el mismo día hubo un excedetnte de -367 MWy un déficit de 564 MW.

Esta dependencia se refiere tanto a la potencia instántanea como a la energía. Esta última faceta se ponde de manfiesto analizando el funcionamiento de días seguidos.

En el siguiente cuadro se resumen los datos de 2015. Se han establecidolos intervalos de días seguidos de déficit o de exceso de energía y se indica en el cuadro el número de días de cada intervalo, la energía total de déficit o exceso y el valor medío del intervalo.

Puede verse que hay periodos largos de días de poco viento, con un máximo de 30, y valores altos de 12, 17 y 18 días. El número de días seguidos de exceso de viento son más reducidos con un máximo de 12.

Si Navarra funcionase como una isla eléctrica debiera tener almacenada la energía demandada en el periodo más largo de días sin viento. En el año 2015 habría sido de 211.618 MWh, que supone tener un embalse lleno de 272 Hm³ con un desnivel de 330 m, lo que es, evidentemente imposible.

Tambien se requerira tener asegurada la potencia máxima necesaria. En 2015 el déficit fue de 564 MW, para la situación actual de potencia eólica instalada. Si considerasemos la potencia máxima historica (886 MW) se precisaría una potencia complementaria de 709 MW.

En el apartado siguiente indicamos algunas posibilidades de centrales reversibles de diferentes saltos y capacidades de embalse, pero todas ellas muy por debajo de las necesidades. Esta limitación pone de manifiesto la necesidad de disponer de líneas de conexión con el sistema eléctrico

FUNCIONAMIENTO EN 2015 CON 1.016 MW EÓLICOS									
Intervalo	nº días	DE	FICIT	SUPI	ERAVIT				
		MWh	MWh/día	MWh	MWh/día				
7/1 a 10/1	4	25.377	6.344						
21/1 a 23/1	4	19.412	4.853						
18/1 a 22/1	5	20.415	4.083						
23/1 a 23/7	5			-25.450	-5.090				
1/2 a 3/2	3	16.759	5.586						
7/2 a 16/2	10	40.801	4.080						
18/2 a 20/2	3	17.570	5.857						
28/2 a 3/3	4	21.036	5.259						
16/3 a 19/3	4	17.722	4.431						
25/3 a 5/4	12			-68.592	-5.716				
29/4 a 3/5	5	23.314	4.663						
5/5 a 13/5	9	37.527	4.170						
14/5 a 17/5	4			-20.628	-5.157				
19/5 a 27/5	9			-58.381	-6.487				
28/5 a 14/6	18	83.957	4.664						
15/6 a 20/6	6			-36.281	-6.047				
24/6 a 2/7	9	44.328	4.925						
13/7 a 24/7	12	75.598	6.300						
28/7 a 8/8	12	46.892	3.908						
10/8 a 14/8	5	25.240	5.048						
19/8 a 28/8	10	56.470	5.647						
6/9 a 11/9	6	30.599	5.100						
17/9 a 3/10	17	68.592	4.035						
6/10 a 12/10	7	29.881	4.269						
16/10 a 19/10	4	26.596	6.649						
26/10 a 31/10	6	20.885	3.481						
4/11 a 12/11	9	73.152	8.128						
14/11 a 20/11	7	45.969	6.567						
25/11 a 28/11	4			-18.557	-4.639				
29/11 a 27/12	30	211.618	7.054						
29/12 A 31/12	3	20.711	6.904						
Máximos	•		8.128		-6.487				

CETRALES REVERSIBLES DE ALMACENAMIENTO DE ENERGÍA

La implantación de un sistema eléctrico basado en energías renovables requiere disponer de almacenamientos de energía para compensar la producción en horas sin sol o de poco viento. En el estado actual de la técnica ello se consigue con centrales reversibles con dos embalses de modo que en horas de gran producción se almacena agua en el embalse superior y en horas de mucha de demanda se produce energía en la central bajando el agua del embalse superior al inferior.

Esta solución se implanto en España con motivo de la construcción de centrales nucleares, que supusieron un aumento grande la producción sin elasticidad de ajustarse a la demanda. En aquella época no estaba unificado el sistema eléctrico y cada compañía que construyó una nuclear instaló un sistema reversible.

Anteriormente ya había centrales de acumulación de energía, como la de Urdiceto, construida en el río Cinca en 1930, que almacenaba agua en un embalse alto para poder generar en épocas de caudales bajos en el río.

En 2015 había un total de 22 centrales reversibles construidas con una potencia total de 5.870 MW, entre las que destacan Villarino (810 MW), La Muela I (635 MW), La Muela II (840 MW), Aldeadavila I (421 MW), Aguayo (362 MW), Moralest (219 MW) etc.

Están previstas otras siete importantes con una potencia total de 2.440 MW.

Posibles centrales reversibles en Navarra

Si considerásemos a Navarra como una isla eléctrica se precisaría asegurar la capacidad de generación de la mayor potencia demandada (886 MW) y también disponer de la energía requerida en días sucesivos de poco viento (211.618 MWh). Para asegurar la potencia máxima se requiere un complemento de 886 – 177 = 709 MW y por otra disponer de la energía acumulada necesaria para un intervalo de días seguidos sin viento (211.618 MWh).

En el cuadro siguiente se indican los datos principales de posibles centrales reversibles que pueden construirse en Navarra

DATOS DE POSIBLES CENTRALES REVERSIBLES EN NAVARRA

Emplazamiento	Altura salto m	Embalse superior Hm3	Embalse inferior Hm3	Caudal turbinable m3/s	Potencia generación MW	Horas de funcionamiento Horas	Energía acumulada MWh	Longitud tubería m
Leache-Aibar	311	5	7	10	26	138,9	3.672	5.200
				20	53	69,4	3.672	
				50	132	27,8	3.672	
Oladea	705	2	2	10	60	55,6	3.329	3.000
				20	120	27,8	3.329	
				50	300	11,1	3.329	
Almándoz	680	0,6	0,6	5	29	33,3	963	2.800
				10	58	16,7	963	
				20	116	8,3	963	
Abodi-Irabia	590	0,5	14	5	25	27,8	697	3.000
		-,-		10	50	13,9	697	
				20	100	6,9	697	
Belate-Txaruta	650	1	1	10	55	27,8	1.535	3.800
Bolato Txarata	000		•	20	111	13,9	1.535	0.000
				30	166	9,3	1.535	
La Negra-Fustiñana	330	20	20	10	28	555,6	15.583	7.400
La Negra-i usunana	330	20	20	20	56	277,8	15.583	7.400
				50	140	111,1	15.583	
Belate-Sansisaroi	510	3	3	10	43	83,3	3.613	5.000
	0.0			20	87	41,7	3.613	0.000
				50	217	16,7	3.613	
Tudela	116	1,8	0,77	18	15		422	5.183
	TOTAL	32,1					29.813	

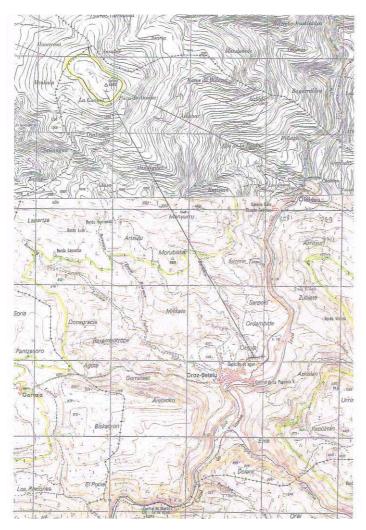
Coeficiente de rendimiento

8,5

La mayor altura de salto es el de Olaldea de 705 m y el mayor volumen de embalse el de La Negra Fustiñana de $20~{\rm Hm}^3$.

Puede apreciarse que no es fácil asegurar la potencia máxima (709 MW), ya que se requeriría construir varias de estas centrales, pero es imposible asegurar la energía acumulada de 211.618 MWh, La central de La Negra únicamente asegura 15.583 MWh y la energía del resto es irrelevante.

Sin embargo algunas de esas centrales reversibles si pueden servir para un funcionamiento diario de bombear en hora valle y generar en punta, con lo que se consigue un mejor funcionamiento del sistema eléctrico.

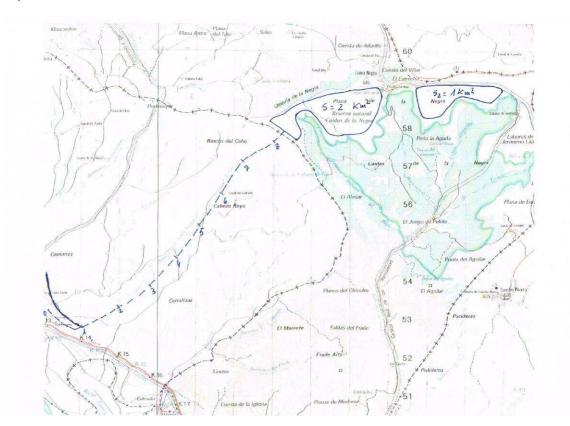

Central reversible de Oladea

De la centrales de embalses pequeños la mejor es la de Olaldea que puede tener los dos embalses de 2 Hm³ y, dado su gran desnivel (705 m) y reducida longitud de tubería, puede tener una potencia importante.

El embalse superior está en la Corona (cota 1.386) que es un alto redondeado, suave, con poca vegetación, en el que podría construirse un embalse de una superficie de unos 200.000 m² que, con 10 m de altura de agua, permitiría crear 2 Hm³ de Además podrían instalarse aerogeneradores en la parta alta.

El embalse bajo está en el cauce del río Irati, con la presa aguas arriba de la actual presa de la central de Oladea 2, en ese tramo el río tiene una sobreancho que permite crear un embalse de unos 2 Hm³, con la cota máxima del orden de la 670.

En el plano siguiente puede verse el embalse alto y el trazado de la tubería


Central reversible La Negra-Fustiñana

La Plana de la Negra es una superficie sensiblemente horizontal, muy extensa (tiene varios kilómetros cuadrados), situada entre las cotas 630 y 645 y que pertenece, en su mayor parte, a las Bardenas Reales. Es factible construir un embalse de gran capacidad construyendo un dique lateral de unos 10 m de altura que, con una superficie de unos 2 km², tenga una capacidad de 20 Hm³. Podría incluso aumentarse la superficie de la balsa en otro km², con el que el embalse podría ser muy superior.

Próximo a La Negra, en término de Fustiñana, a unos 8,5 km, se puede construir un embalse situado entre las cotas 255 y 300 con una capacidad similar al de La Negra. Por debajo de este embalse pasa el Canal de Tauste, del que se podría tomar agua para el primer llenado y para las reposiciones de evaporación.

Entre los dos embalses se puede construir una central reversible de unos 330 de salto, que con un caudal de 50 m³/s, tendría una potencia de 120.000 kW y un almacenamiento de energía de 13,3 GWh, que podría funcionar a potencia máxima durante 111 horas (4,6 días).

Se trata de una instalación excepcional por el gran volumen de agua acumulada en el embale superior.

El embalse superior ocupa únicamente la superficie horizontal de la Plana sin afectar a la Reserva natural de las Caídas de la Negra. La conducción, así como el embalse inferior están fuera de la delimitación de las Bardenas.

Características topográficas y geológicas de la negra

La superficie horizontal de la Plana de La Negra se debe a una capa caliza horizontal situada sobre arcillas rojas con areniscas. Sobre las calizas hay una capa de cuaternario en la que hay cultivos de cereal y almendrucos.

En las fotos siguientes se ve la Negra desde el Norte y desde el Sur

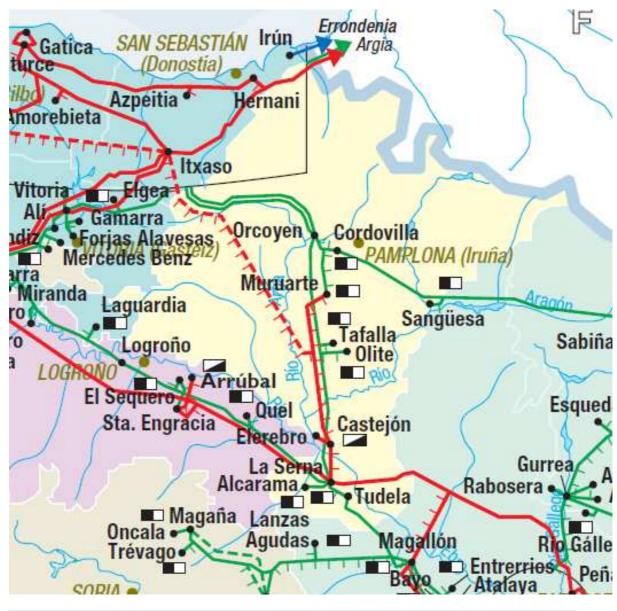
La Negra desde el Norte

La Negra desde el Sur

En la Plana de la Negra hay campos de cereal, terrenos sin cultivar y almendrucos, como puede verse en las fotos siguientes.

Cereal, terrenos sin cultivar y almendrucos en la Negra

Se aprecia la gran extensión del terreno y la superficie casi horizontal, con cultivos de poco valor.


La única afección a Bardenas se produce en la zona llana superior y no se tocan los taludes de Las Caídas de la Negra, que es una Reserva natural. La cámara de laves y la tubería quedan fuera de la delimitación de Bardenas.

Embalse de Fustiñana

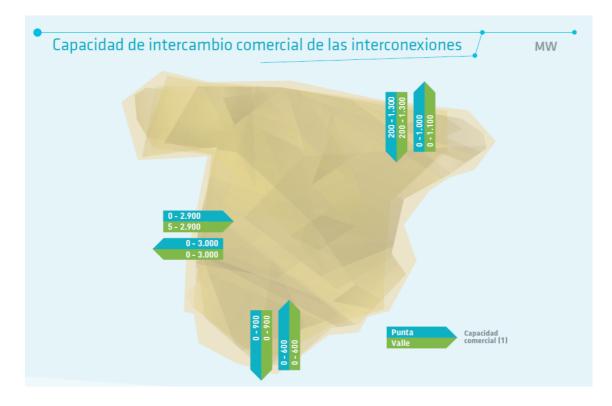
En término de Fustiñana, cerca del núcleo urbano y junto a la ermita, es factible construir una presa de unos 45 m de altura con un embalse de unos 20 Hm³. El terreno está formado por arcillas, por lo que no habrá problemas de estanqueidad. Se ocupan terrenos de cultivo.

LINEAS ELECTRICAS DE CONEXIÓN DE NAVARRA

En el plano siguiente figuran las redes eléctricas principales de Navarra. Puede verse que la línea de 400 kV Olite-Itaxo está sin construir.

Líneas		Circuitos	Tensiones	
	previstos	instalados		
	1	1		400 kV
En servicio	2	1		220 kV
	2	2		132÷110 kV
,	(1	1		< 110 kV
En construcción y programadas	2	1		
y programadas	2	2		Todas las líneas se han dibujad en el color al que funcionan.

La línea Muruarte-La Serna tiene una capacidad de 1.830 MW y la de Olite-Ittxaco será de 2.500 MW. Se precisa la construcción de esta línea ya que el exceso de generación eólica de


Navarra debe ser evacuada hacia el País Vasco que es una región deficitaria de energía, mientras que Aragón y Castilla-León son excedentarias en producción eólica. La línea actual Orcoyen-Itxaso tiene una capacidad de sólo 330 que podría ampliarse a 390 MW. El exceso de producción eólica de Navarra a evacuar es de

	Con Potencia eólica							
	1.016 MW	1.457 MW	2.000 MW					
Máximo déficit	564	562	561					
Máximo superávit	-580	-877	-1.251					

El Sistema eléctrico peninsular apenas tiene conexiones con Francia. La capacidad total de transporte era, en 2014, de 1.000 MW en horas punta y de 1.300 MW en horas valle y que ha pasada a 2.800 MW con la reciente conexión de Cataluña con Francia

El sistema eléctrico peninsular funciona como una isla eléctrica, su seguridad requiere la construcción de nuevas líneas de conexión con Francia., pasando de los 2.8000 MW actuales a 8.000 MW Sería muy conveniente que una de ellas pase por Navarra y facilitase la exportación de energía eléctrica renovable de Navarra a Francia. Definirla y solucionar los problemas ambientales que las nuevas líneas ocasionan debiera ser, de acuerdo con Red Eléctrica, uno de los principales objetivos del Plan Energético de Navarra.

Recientemente Red Eléctrica ha expuesto la previsión de construcción de esta línea desde Muruarte a Francia señalando que la mayor parte del trazado que atravesará los Pirineos será enterrada bajo tierra, como lo ha sido la línea recientemente construida que une Cataluña con Francia. Esa opción se hace por razones ambientales a pesar de su coste es unas diez veces más elevado que el aéreo.

CONCLUSIONES

- -Navarra es una referencia nacional en la generación de energía eléctrica con fuentes renovables. Se produce un 78 % de la demanda, mientras que en el total del Sistema Eléctrico peninsular se genera con renovables el 44 %
- -Ampliando la potencia eólica a 2.000 MW se puede producir un exceso, sobre la demanda anual de 1.150 GWh.
- -A pesar de esas posibilidades el suministro eléctrico de Navarra está condicionado al Sistema Eléctrico Peninsular, ya que la variación de la potencia generada es continua y no es posible pensar en tener una autonomía eléctrica.
- -Hay que destacar el excelente funcionamiento de Red Eléctrica que consigue garantizar la potencia y la frecuencia en condiciones tan sumamente variables de generación.
- -Se requiere la construcción de la línea Olite-Itxaco que garantice las conexiones con el resto de la red, permita evacuar la energía eólica de Navarra.
- -Dada la necesidad de conseguir conexiones eléctricas con Francia se debe propiciar una línea desde Pamplona a la frontera.
- -En Navarra existen varias posibilidades de construir centrales reversibles. La de mayor energía acumulada está en La Negra, pero su capacidad no permite, de ninguna manera asegura el suministro, pero podrían ser de interés para el Sistema Eléctrico.